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Upper bounds of the exact order of magnitude in n are given for

max&1�x�1 | p$(x)|

max&1�x�1 | p(x)|

for polynomials p of degree n, free of zeros in certain regions containing the interval
(&1, 1). � 1999 Academic Press
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Markov's classical inequality

&p$&�n2 &p&,

where & } } } & stands for the maximum norm

max
&1�x�1

| } } } (x)|

over the interval [&1, 1], is valid for all polynomials p of degree n with
complex coefficients. The inequality is sharp for the nth Tchebyshev poly-
nomial having all its zeros in (&1, 1).

Erdo� s initiated in [1] the problem of improving the estimate under
conditions ruling out this extremal case when he replaced the factor n2 with
cn for polynomials with zeros only on the two half-lines (&�, &1] and
[1, �). Here and in what follows, c denotes absolute constants not necessarily
the same at different occurrences. Apart from the value of c, this result is
also best possible.
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Let D: be the lens shaped region, the (open) circular biangle symmetric
with respect to the real axis, bounded by two circular arcs joining 1 and
&1 and meeting each other at an (inner) angle :? in \1. We prove the

Theorem. For every 0�:<1 there exists a constant c(:) depending only
on : such that

&p$&�c(:) n2&: &p&

for polynomials p of degree n non-vanishing in D:.1

Szego� 's [2] general Markov-type inequality stated for D: and the critical
points \1,

| p$(\1)|�c(:) n2&: sup
z # D:

| p(z)|,

has the same exponent in it. In fact, this formulation is a consequence of
our Theorem if applied to

sup
z # D:

| p(z)|+ p(z)

that does not indeed vanish in D: and has the same derivative as p(z).
Szego� proved his estimate best possible, the same then holds for 0�:<1
in our Theorem.

A similar construction shows that the symmetry of D: plays no essential
role, assuming in addition p(z){0 even for Jz<0 will result in no
improvement in the Theorem.

The case :=1, i.e., that of the unit disc D1, is, in fact, included if we
apply the Theorem with :=1&1�log n and the fact from its proof that the
constant factor can be chosen as

c(:)=
c

1&:
:

&p$&�cn log n &p&

for polynomials non-vanishing in the unit disc.2

It is interesting to note that for polynomials with real coefficients log n
is not necessary here: This is a special case of earlier results by Borwein
and Erde� lyi in [4], allowing among other things a given number of excep-
tional zeros inside the disc. See also the forthcoming paper [5] by Erde� lyi
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1 I owe this problem to T. Erde� lyi, who attributes it to P. Erdo� s.
2 This observation for which I originally had a somewhat different proof has already

appeared in [3].



exhibiting greater differences between real and complex cases than just a
logarithmic factor. It would be interesting to carry over their investigations
to D: and even to more general regions.

If 1<:<2, then

&p$&�c(:)n &p&

for polynomials with complex coefficients, as well. We shall give a hint of
how to get it together with better pointwise bounds inside (&1, 1) in the
Theorem, at the end of this paper.

For other Markov-type inequalities see the recent books [3] and [6].

Proof. Without loss of generality we may assume

| p(x)|�1 (&1�x�1)

and have to prove

| p$(x)|�c(:) n2&: (&1�x�1).

We first estimate p( y) on the rest of the real axis, i.e., for | y|>1.
Let us introduce the notation 0: for the complement of D: with respect

to the closed plane. If

p(z)=a `
n

i=1

(z&zi ),

where zi # 0:, then

log | p( y)|=log | p(x)|&log } p(x)
p( y) }�& :

n

i=1

log } x&z i

y&zi } (&1�x�1).

Integration with respect to a positive measure + on [&1, 1] normalized
by +([&1, 1])=1 yields

log | p( y)|�& :
n

i=1

u(zi , y)�&n inf
z # 0 :

u(z, y),

where

u(z, y) =
def |

1

&1
log } z&x

z& y } d+(x)=|
1

&1
log |z&x| d+(x)+log

1
|z& y|

.

We want to choose a function u(z, y), i.e., a measure + with infz # 0: u(z, y)
as large as possible. Due to the special shape of D:(0:), this extremal
problem is easily solved.
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It follows from the general theory of subharmonic functions, especially
from their Riesz representation (see, e.g., [7]), that u(z, y), as a function
of z, is subharmonic in the closed plane, harmonic outside [&1, 1] with
the exception of a logarithmic pole at z= y (meaning, u(z, y)&log(1�|z& y| )
is harmonic at z= y), u(�, y)=0, and conversely, every such function has
an integral representation in question with a normalized measure +.

Let G(z, y, 0:) be the Green function of 0:, i.e., the function vanishing
on the boundary of 0: and harmonic inside 0: with the exception of a
logarithmic pole at y as has been just described. We now show that

G(z, y, 0:)&G(�, y, 0:)

can be continued to a function u(z, y). (It will then be clear that this is the
optimal choice but, of course, we do not need this fact.) Since

inf
z # 0:

G(z, y, 0:)=0,

this will yield the inequality

log | p( y)|�nG(�, y, 0:).

It is convenient to apply the linear transformation

w=
z&1
z+1

carrying 0: into the angular region

0:
1 =

def {w : |arg w|�?&
:?
2 = ,

[&1, 1] into the negative axis [&�, 0], � into 1, y into

y1 =
def y&1

y+1
,

and it suffices to check the corresponding properties of the Green function
G(w, y1 , 0:

1).
Mapping further 0:

1 onto a half�plane by w ;,

;=
1

2&:
(1�2�;<1),
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this function is computed as

G(w, y1 , 0:
1)=log }w

;+ y ;
1

w;& y ;
1 } .

Here w ;, the regular branch that takes the value 1 at w=1, continues
into the whole plane slit along the negative axis, giving also a continuation
of G(w, y1 , 0:

1) as a harmonic function there for w{ y1 . It is in this step
that we have made use of the assumption :<1, i.e., ;<1: w; maps the slit
plane in a one�to�one fashion onto an angular region avoiding the negative
axis, thus producing no logarithmic pole other than y1 . G(w, y1 , 0:

1) even
extends continuously onto the negative axis [&�, 0] and it remains to see
that it is subharmonic there.

In a neighbourhood of every point of the negative axis other than the
endpoints 0 and �, G(w, y1 , 0:

1) can be continued harmonically from the
upper half of the neighbourhood into the lower half and vice versa.
|w ;+ y ;

1 | decreases and |w ;& y ;
1 | increases as we do these continuations

along a circle |w|=R. We see that the continued value is smaller than the
actual value there, hence G(w, y1 , 0:

1) can be thought of as the maximum
of two harmonic functions and is, as such, subharmonic. The same follows
for w=0 and � by continuity.

(We have appealed to subharmonic functions in order to avoid cumber-
some computations. However, one may directly verify that the absolutely
continuous measure given by

d+(x)
dx

=
2; sin ;?
?(1&x2) \

x1

y1 +
;

\}\x1

y1+
;

e ;?i+1 }
&2

+ }\x1

y1+
;

e;?i&1 }
&2

+ ,

x1=
1&x
1+x

(&1<x<1)

does represent our u(z, y).)
We conclude that

log | p( y)|�nG(�, y, 0:)=nG(1, y1 , 0:
1)=n log

1+ y;
1

1& y ;
1

.

For 1< y�2

y;
1=\ y&1

y+1+
;

�
1

- 3
,

log
1+ y ;

1

1& y ;
1

<log(1+ y ;
1 )+log(1+3y ;

1 )<4y ;
1 <4( y&1) ;.
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For y>2,

y;
1=\ y&1

y+1+
;

=\1&
2

y+1+
;

�1&
1

y+1
,

log
1+ y ;

1

1& y ;
1

<log 2+log( y+1)<4( y&1) ;,

estimating crudely this time.
Together with similar bounds valid for y<&1 we thus have an estimate

on the whole real line

log | p( y)|�4n( | y|&1); ( | y|>1),

while by assumption

log | p( y)|�0 ( | y|�1).

Fixing &1�x�1, where we want to estimate the derivative, it will be
sufficient to use

log | p( y)|�4n | y&x| ; (&�< y<�).

The function

R \z&x
i +

;

(Jz�0)

has boundary value

| y&x|; cos
;?
2

(&�< y<�)

on the real axis. Hence

h(z) =
def 4n

cos
;?
2

R \z&x
i +

;

,

harmonic in the upper half-plane, majorizes log | p(z)| on the real line. This
also holds at �,

lim
R � �

max
Jz�0
|z|=R

[log | p(z)|&h(z)]=0,
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for the first term increases at most logarithmically, the second does at least
as a power of R. By the maximum principle we then get

log | p(z)|�h(z) (Jz�0).

This implies for |z&x|�r,

log | p(z)|�
4n

cos
;?
2

r;,

| p(z)|�e(4n�cos( ;?�2)) r;

first in the upper half-plane, but similarly in the lower one.
Cauchy's inequality for the derivative gives

| p$(x)|�
max |z&x|=r | p(z)|

r
�

e(4n�cos( ;?�2)) r;

r
,

and choosing

r =
def \cos

;?
2

n +
1�;

,

| p$(x)|�e4 \
n

cos
;?
2 +

1�;

=
def c(:) n2&:.

The proof is completed.
Using the full strength of our estimation for log | p( y)| and

h(z) =
def 4n

sin ;?
J((z+1) ;+(1&z� ) ;)

as majorant, one gets the improved Bernstein�Markov-type inequality

| p$(x)|�c(:) min(n1�;, n(1&x2) ;&1) (&1�x�1).

If :>1, then D: is the union of two discs. Applying our method to both
of them separately, it gives, in a natural way, bounds for log | p( y)| not on
the real axis but rather on the two circular arcs, the symmetric images of
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(&1, 1) with respect to the periphery of the discs. (The resulting inequality
is a transformed form of the elementary one

| p(z)|�|z|n | p(z1)| ( |z|>1),

where p is a polynomial of degree n having no zero inside the unit disc and
z1=1�z� is the symmetric image of z with respect to the unit circle.) Using
harmonic majorization in the three regions the two circular arcs and
[&1, 1] divide the plane into��as we did for the two half-planes in the
above proof��one extends these bounds to

| p(z)|�ec(:)r ( |z&x|�r, &1�x�1)

in the whole plane, implying

| p$(x)|�c(:)n (&1�x�1),

as we remarked in our discussion.
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