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Upper bounds of the exact order of magnitude in n are given for

max_icxc1 [PV

max _j<y<i [p(x)]

for polynomials p of degree n, free of zeros in certain regions containing the interval
(—1,1). © 1999 Academic Press
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Markov’s classical inequality

Ip'll<npl,

where || --- | stands for the maximum norm
max |- (x)]
—1<x<l1

over the interval [ —1, 1], is valid for all polynomials p of degree n with
complex coefficients. The inequality is sharp for the nth Tchebyshev poly-
nomial having all its zeros in (—1, 1).

Erdés initiated in [1] the problem of improving the estimate under
conditions ruling out this extremal case when he replaced the factor n* with
cn for polynomials with zeros only on the two half-lines (—oo, —1] and
[ 1, oo). Here and in what follows, ¢ denotes absolute constants not necessarily
the same at different occurrences. Apart from the value of ¢, this result is
also best possible.
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Let D* be the lens shaped region, the (open) circular biangle symmetric
with respect to the real axis, bounded by two circular arcs joining 1 and
—1 and meeting each other at an (inner) angle az in +1. We prove the

THEOREM. For every 0 <a <1 there exists a constant c(a) depending only
on o such that

1p' < elo) n®=* || pl|
for polynomials p of degree n non-vanishing in D*.!

Szegd’s [2] general Markov-type inequality stated for D* and the critical
points +1,

|p'(+£ 1)l <cla) n®~* sup |p(2)],

zeD*

has the same exponent in it. In fact, this formulation is a consequence of
our Theorem if applied to

sup |p(z)| + p(z)

ze D%

that does not indeed vanish in D* and has the same derivative as p(z).
Szegd proved his estimate best possible, the same then holds for 0 <a <1
in our Theorem.

A similar construction shows that the symmetry of D* plays no essential
role, assuming in addition p(z)#0 even for Jz<0 will result in no
improvement in the Theorem.

The case a =1, ie., that of the unit disc D!, is, in fact, included if we
apply the Theorem with « =1 — 1/log n and the fact from its proof that the
constant factor can be chosen as

Ip' <cnlogn|lp|

for polynomials non-vanishing in the unit disc.?

It is interesting to note that for polynomials with real coefficients log n
is not necessary here: This is a special case of earlier results by Borwein
and Erdélyi in [4], allowing among other things a given number of excep-
tional zeros inside the disc. See also the forthcoming paper [5] by Erdélyi

1T owe this problem to T. Erdélyi, who attributes it to P. Erdds.
2 This observation for which I originally had a somewhat different proof has already
appeared in [3].
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exhibiting greater differences between real and complex cases than just a
logarithmic factor. It would be interesting to carry over their investigations
to D* and even to more general regions.
If 1 <a<?2, then
Ip'l < cla)n || pl

for polynomials with complex coefficients, as well. We shall give a hint of
how to get it together with better pointwise bounds inside (—1, 1) in the
Theorem, at the end of this paper.

For other Markov-type inequalities see the recent books [3] and [6].

Proof. Without loss of generality we may assume
lp(x) <l (=I<x<l)
and have to prove
P <@~ (—1<x<1),

We first estimate p(y) on the rest of the real axis, i.e., for |y| > 1.
Let us introduce the notation * for the complement of D* with respect
to the closed plane. If

n
=a ] (z—z)
iz1

where z; € Q% then

n

log ()] =log ()] —log |23 < - 3 1og

i=

X—Zz

(—1<x<1).

i
y—z;

Integration with respect to a positive measure x on [ —1, 1] normalized
by u([—1,1]) =1 yields

log |p(y Z u(z;, y) < —n inf u(z, y),
P zeQ*
where
def [1 1
u(z, y) =j log‘ ‘d,u( )= j | log [z =x] du(x) +log .

We want to choose a function u(z, y), i.c., a measure u with inf, _ o« u(z, y)
as large as possible. Due to the special shape of D*(Q*), this extremal
problem is easily solved.
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It follows from the general theory of subharmonic functions, especially
from their Riesz representation (see, e.g., [ 7]), that u(z, y), as a function
of z, is subharmonic in the closed plane, harmonic outside [ —1, 1] with
the exception of a logarithmic pole at z= y (meaning, u(z, y) —log(1/|z— y|)
is harmonic at z=y), u(o0, y) =0, and conversely, every such function has
an integral representation in question with a normalized measure .

Let G(z, y, Q%) be the Green function of Q% i.e., the function vanishing
on the boundary of Q% and harmonic inside Q2% with the exception of a
logarithmic pole at y as has been just described. We now show that

G(Z’ Vs ro)_ G(009 Vs ‘Qa)

can be continued to a function u(z, y). (It will then be clear that this is the
optimal choice but, of course, we do not need this fact.) Since

inf G(z, y, 2%)=0,

zeR™
this will yield the inequality
log |p(y)l <nG(o0, y, Q%).
It is convenient to apply the linear transformation

_z—l
Tzl

w
carrying Q* into the angular region

def o
Qf = {w: larg w| <7z—2},

[ =1, 1] into the negative axis [ — o0, 0], oo into 1, y into

der y—1
yl y+15

and it suffices to check the corresponding properties of the Green function
G(Mja yl) Q?)
Mapping further Q% onto a half-plane by w?,

p=-t (p<p<),
2 —«
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this function is computed as

By B
Glw, 31, ©%) = log Wy]

Wyt

Here w?, the regular branch that takes the value 1 at w= 1, continues
into the whole plane slit along the negative axis, giving also a continuation
of G(w, y;,2%) as a harmonic function there for w# y,. It is in this step
that we have made use of the assumption a < 1, i.e., f < 1: w# maps the slit
plane in a one—to—one fashion onto an angular region avoiding the negative
axis, thus producing no logarithmic pole other than y,. G(w, y,, 27) even
extends continuously onto the negative axis [ — oo, 0] and it remains to see
that it is subharmonic there.

In a neighbourhood of every point of the negative axis other than the
endpoints 0 and oo, G(w, y,, 2%) can be continued harmonically from the
upper half of the neighbourhood into the lower half and vice versa.
|w? + y#| decreases and |wf — y#| increases as we do these continuations
along a circle |w| = R. We see that the continued value is smaller than the
actual value there, hence G(w, y,, 2¢) can be thought of as the maximum
of two harmonic functions and is, as such, subharmonic. The same follows
for w=0 and oo by continuity.

(We have appealed to subharmonic functions in order to avoid cumber-
some computations. However, one may directly verify that the absolutely

continuous measure given by
a0 i (5 [ 2 ),
J1 J1

dx  a(l1—x2)\y,
L= cx<n
X = —1<x
Tlx

does represent our u(z, y).)
We conclude that

1+ %
1—yf

log |P(J’)| <}’1G(OO, Vs Q“):nG(l’ yl,.Q‘;‘)=nlog
Forl<y<2
y—1>” 1
we(Z1
v+l T3

1+ y#
1—yf

log <log(1+ yf) +1log(1+3yf)<dypb<d(y—1)~
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—1\# 2 \? 1
- (7 7
y+1 y+1 y+1

1+ yf
1—yf

For y>2,

log <log2+log(y+1)<4(y—1)%,

estimating crudely this time.
Together with similar bounds valid for y < —1 we thus have an estimate
on the whole real line

log [p(»)| <4n(ly| =1 (|y|>1),

while by assumption

log [p(»I <0 (lyl<1).

Fixing —1<x<1, where we want to estimate the derivative, it will be
sufficient to use

log |[p(y)|<dnly—x|# (—<y<on)

The function

has boundary value
|y—x|ﬂcos% (—o<y<m)

on the real axis. Hence

harmonic in the upper half-plane, majorizes log | p(z)| on the real line. This
also holds at oo,

lim  max {log |p(z)| —h(z)} =0,
o BSS
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for the first term increases at most logarithmically, the second does at least
as a power of R. By the maximum principle we then get

log |p(2)<h(z)  (Jz2=0).
This implies for |z — x| <,

4n
P

log [p(2)] <

b}

COS ——
2

|P(Z)| <8(4n/cos(/5'7z/2))r1’

first in the upper half-plane, but similarly in the lower one.
Cauchy’s inequality for the derivative gives

B
maxlz—xl —, |p(Z)| €(4n/cos(ﬁ7z/2)) r

Ip'(x)] < < ,
r r
and choosing
1/
pr
d:ef COS 7
n b
n Ve def 2—a

’ < al = p_
Pl | o,

The proof is completed.
Using the full strength of our estimation for log | p(y)| and

I+ +(1-9)7)

as majorant, one gets the improved Bernstein-Markov-type inequality
1P| <c(o) min(n", n(1 —x2)#~1)  (—1<x<1).
If > 1, then D* is the union of two discs. Applying our method to both

of them separately, it gives, in a natural way, bounds for log |p(y)| not on
the real axis but rather on the two circular arcs, the symmetric images of
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(—1, 1) with respect to the periphery of the discs. (The resulting inequality
is a transformed form of the elementary one

P <lz["pz0)l (lz[>1),

where p is a polynomial of degree n having no zero inside the unit disc and
z, =1/z is the symmetric image of z with respect to the unit circle.) Using
harmonic majorization in the three regions the two circular arcs and
[ —1,1] divide the plane into—as we did for the two half-planes in the
above proof—one extends these bounds to

p(2)|<e™”  (lz—x|<r, —1<x<1)
in the whole plane, implying
P <clw)n (=1<x<1),

as we remarked in our discussion.
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